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Direct measurements of the energy transfer spectrum in locally isotropic grid 
turbulence have been used to determine the extent of validity for grid turbulence 
of the dynamical equation for the three-dimensional energy spectrum in iso- 
tropic turbulence. The extent of applicability of the isotropic energy balance 
is consistent with the usual local isotropy criterion based on energy spectra alone. 

The present results are in general agreement with some previous measurements 
by Uberoi, who determined the transfer spectrum assuming the strict validity 
of the isotropic dynamical equation. The measured energy transfer spectra are 
quantitatively similar to those calculated by Kraichnan using the direct- 
interaction approximation. 

1. Introduction 
The complex, inherently non-linear process of spectral transfer of turbulent 

kinetic energy between continuously distributed scales of motion in a turbulent 
flow has been the subject of many analytical studies, but comparatively few 
experimental efforts have been directed at  this central fluid-mechanical problem. 
The dynamical equation for the three-dimensional energy spectrum E(k,  t )  in 
homogeneous, isotropic turbulence is 

where 

and T ( k ) ,  the energy transfer spectrum, is a functional of the Fourier transform 
of the triple velocity correlation between a single velocity component taken at  
one point and two velocity components taken at  another point in the turbulent 
field. 

Equation (1) states that the rate of change of the energy spectrum at any given 
wave-number k is equal to the net rate of transfer of energy to wave-number k 
from all other wave-numbers minus the rate of viscous dissipation at wave- 
number k. As a result of the averaging process used to derive ( l ) ,  the initial value 
problem for E(k , t )  is indeterminate, for we have two unknowns, E and T ,  
related through a single equation. To solve for E(k,  t )  in terms of E(k,  0 ) ,  one may 

t Also : Scripps Institution of Oceanography. 
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either postulate a relation between the rate of transfer T and the spectrum E ,  or 
carry out a numerical integration of the Fourier-transformed Navier-Stokes 
equation from which (1) is derived. Calculations of the latter type, which are 
clearly preferable to hypotheses lacking sound physical basis, have been carried 
out for decaying isotropic turbulence by Kraichnan (1964) using the direct-inter- 
action approximation to evaluate the inertial interactions associated with T(k,  t ) .  

Various investigators have proposed hypotheses relating T and E.  As pointed 
out by Uberoi (1963), the validity of the various postulates may be checked by 
comparing the measured spectrum with the predicted spectrum, but a direct 
measurement of the energy transfer is a more direct check and brings out the 
essential features of the problem. For grid-generated turbulence, Uberoi has 
compared Heisenberg’s postulate for T(E) with experimentally determined 
T(k, t )  obtained from the sum of the measured W ( k ,  t ) /at  and 2uk2E(k, t ) ,  assuming 
the validity of (1). 

In the present study the extent of the validity of (1) for grid-generated turbu- 
lence is determined by directly measuring all the terms in the equation. The 
measured T(k,  t )  spectra are compared with those obtained indirectly by Uberoi, 
with direct-interaction calculations by Kraichnan, and with various hypotheses 
relating T(k)  and E ( k ) .  

2. Experimental arrangement 
The experiments were carried out in the 76 ern square test section of the low- 

turbulence wind-tunnel in the Department of the Aerospace and Mechanical 
Engineering Sciences. Biplane grids of round, polished dural rods were located 
2-4m from the end of the contraction section. Two different grids were used, 
having mesh spacings M of 2.54 and 5.08cm with rods of 0.477 and 0.953cm 
diameter, respectively. The mean velocity U was 15.7 m/s for the 2.54 em grid 
measurements and 7.7 m/s for the 5-08 cm grid measurements, with corre- 
sponding Reynolds numbers based on mesh spacing of 25,600 and 25,300, 
respectively. These conditions were nearly the same as those used for measure- 
ments of higher-order time correlations of the longitudinal fluctuating com- 
ponent of velocity reported by Van Atta & Chen (1968). The high-speed, small- 
grid experimental conditions were nearly identical with those of Uberoi with 
respect to mesh spacing and mean velocity, but the grid rod diameter was 
different, as Uberoi used a biplane grid of 0-635cm diameter wooden dowels. 
In  the present experiments we have measured T(k)  only at  x / M  = 48, where x is 
the distance downstream of the grid, whereas Uberoi made (indirect) measure- 
ments of T ( k )  at x / M  = 48, 72 and 110. 

An X-wire arrangement consisting of two mutually perpendicular tungsten 
hot wires, each 0.75 mm long and 5 pm in diameter, was used to measure u and v, 
the longitudinal and transverse components of the fluctuating velocity on the 
tunnel centreline. DISA 55A 01 amplifiers were used to operate the hot wires 
at  constant resistance, with an overheat ratio of 0-5. The hot-wire outputs were 
linearized using DISA 55 D 10 linearizers. The 11.5 cm long, 0.24 cm diameter 
hot-wire probe was held on the tunnel centreline by a vertical 1.27 ern diameter 



Measurements of spectral energy transfer in grid turbulence 745 

aluminium rod extending through a slot in the top of the tunnel. The rod was 
supported by a calibration turntable mounted on a heavy aluminium plate. The 
plate was bolted to heavy chassis slides, which allowed the longitudinal position 
of the probe to  be varied continuously with a minimal amount of friction and 
disturbance to the set-up. The turntable was equipped with a large circular 
protractor for measuring the yaw angle during probe calibration. 
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FIGURE 1. One-dimensional probability distributions for velocity fluctuations. 
U = 15.7 m/s: 0, u; W, v. U = 7.7 m/s: 0, u ;  0, v. Solid line is Gaussian distribution. 

The hot-wire calibrations were performed in laminar flow, with the grid re- 
movedfrom the tunnel. The probe was calibrated in yaw for several values ofthe 
free-stream velocity U and over a wide range of velocities for zero yaw angle. 
For the range of fluctuating velocities encountered in the turbulent flow, the 
sum and difference of the two linearized signals were found to be very closely 
linearly related to u and v, respectively. The resulting calibration constants were 
used to compute the velocity fluctuations from the sampled digital data and for a 
few analogue measurements made as a check on the digitally measured turbulence 
intensities. The results of the analogue measurements of u and v have been reported 
previously by Van Atta & Clien (1968, figure 1). The measurements showed that 
the decay of the normalized velocity fluctuations in the range 38 < x /M < 55 
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was practically identical for both experimental conditions. The measured longi- 
tudinal turbulence levels at x / M  = 48 were (u2)41U = 1.61 x for both 
high- and low-speed runs, and the ratio ((u2)/(v2))4, a measure of the over-all 
anisotropy of the turbulence, was 1.13 and 1-12 for the high- and low-speed 
runs, respectively. 

The linearized hot-wire signals were F M  tape recorded at  a tape speed of 
152.4 cmjs using a Sanborn 3917A recorder. The analogue tape was later played 
back and sampled with an analogue-to-digital converter at  a rate somewhat 
faster than twice the highest frequency for which the turbulent spectrum was 
unmistakably distinguishable from electronic noise. The sampling rates for the 
high- and low-speed data were 16,000 and 56001s respectively. 

The digital data were processed using a CDC 3600 computer. As an initial step, 
the running mean values of (u2), (v2), (u3) and (v3) were computed to determine 
the amount of data necessary to provide stationary values of these quantities. 
Sampling time intervals of 25.6 and 54.9 s were found to be adequate for high- and 
low-speed data, respectively. All subsequently computed spectra were based on 
one data record of this length, and all third-order correlations were based on 
averages of four such records. All spectra and correlation functions were computed 
from the two time series of sampled data for u and v using the discrete fast- 
Fourier-transform method. The data were transformed in records containing 
2048 digital velocities and were processed in the manner previously described by 
Van Atta & Chen (1968, 1969). 

3. Distribution of velocity fluctuations 
The one-dimensional probability densities 

P(Ub,) and P(V/~V,), 

where a, = (u2)* and av = (v2)*, 
were found to be closely Gaussian, as shown in figure 1.  The joint probability 
density for the two velocity components u and v measured instantaneously at 
the same point p[u(t), v( t )]  was found to be closely fitted by a bivariate Gaussian 
distribution with zero correlation, as illustrated in figure 2. These results indicate 
that simultaneous values of u and v measured a t  the same point in grid turbulence 
are statistically independent. As a further check of statistical independence, 
the probability density of the instantaneous product uv was calculated. With the 
assumption of statistical independence, the probability density of the product 
of two Gaussian variables u and v is 

where K O  is the modified Bessel function of the second kind. The good agreement 
between this expression and the measured density, shown in figure 3, further 
confirms the statistical independence of u and v. This is also consistent with the 
result reported by Van Atta & Chen (1969) that for these same data the correla- 
tion R,,,(T) = (u(t) v(t + 7))/(u2)& (v2)+ is essentially zero for all values of T, as 
one would expect for unsheared laterally homogeneous grid tubulence. 
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4. Energy spectra 
The three-dimensional energy spectrum E(k ,  t )  was determined from the one- 

dimensional energy spectra Ell and E,, of the u and v components, respectively. 
These were directly calculated from the discrete Fourier transforms of the time 

0.15 

0.10 

0.05 

0.00 
0.10 

0.05 
s" 
Y 

c; 2 0.00 

0.05 

0.00 

1 0.05 r 

0.00 

0.0 1 

0.00 
-3 -2 -1 0 1 2 3 

-3 -2 - 1  0 1 2 3. 

V P U  

FIGURE 2.  Joint probability distributions for u and v for selected values of u/u,,. Solid 
symbols, U = 15.7 m/s; open symbols, U = 7.7 m/s. Solid curves are two-dimensional 
Gaussian distribution. 

series for instantaneous values of u and v. The data were transformed in records 
containing 2048 digital velocities and were processed exactly as described pre- 
viously by Van Atta & Chen (1968, 1969). 

The measured Ell(kl) and E2,(k1) for x / M  = 48 are shown in figure 4. The 
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extent of local isotropy was determined by comparing the measured E,,(k,) with 
the E,,(k,) calculated from the measured Ell( k,) using the isotropic relation 
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FIGURE 3. Probability distribution of instantaneous values of uv. 0, U = 15.7 m/s; 
0, U = 7-7 m/s. Solid curve: pfzcv) = (l/ngugg) K o ( l z ~ v ] / ~ ~ ~ v ) .  

From the comparison in figure 4, it is found that the turbulence is closely locally 
isotropic for k, 2 1-0 em-l and k, 2 0-5 em-, for the high- and low-speed data, 
respectively, which in both cases corresponds to klk ,  = 0.24. Here, k, = Snf/U,  
where f is frequency (H,) and k ,  = (e/v3)$ is the Kolmogoroff wave-number. 

Assuming that by symmetry the spectrum E33(kl) of the w component was 
equal to E2,(k1), the one-dimensional spectrum Eii(kl) of the total energy was 
computed from the measured Ell(kl) and E2,(k1), where 

(u2) + ( 8 2 )  + (29) = 2JOm E&) dk, 

and Eii(k1) = Ell(k1) + 2E,,(kl)* 
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We note that our definition of Ei&kl) differs from Uberoi's one-dimensional 
total energy spectrum E,(k,) by a factor of two. Uberoi employed a single inclined 
hot wire to measure instantaneous values of u + J ( 2 ) v  and did not obtain u 
and v (and hence Ell(k,) and Ezz(kl))  separately as we have done. The present 

k, (cm-1) 

FIGURE 4. One-dimensional energy spectra for u and w. U = 15.7 m/s: 0, Ell; a, E,, 
U = 7.7 m/s: 0, Ell; 0, E2,. Dashed curves are values of E,, calculated from correspond- 
ing &',, using isotropic relation. 

measured Eii(kl) spectra and those of Uberoi, normalized using the Kolmogoroff 
length scale k~' and velocity scale vE = (ev)*, are shown in figure 5. Here, as 
previously, the dissipation rate E = - i d / d t ( ( u 2 )  + 2(v2)) was computed from the 
slopes of plots of U2/((u2)  + 2(v2)) versus x / M .  Values for E and other parameters, 
useful in comparing the present data with that of Uberoi, are given in table 1. 
As expected, for high enough wave-numbers the spectra define a single universal 
curve. The differences a t  low wave-number reflect the differences in the energy- 
containing eddies, and this difference decreases as Uberoi's x /M increases. The 
present Ei,(lc) for U = 15.7 m/s is quite similar to, but smaller than, that obtained 
for x /M = 48 by Uberoi, since the turbulent intensities for a given x /M are 



750 C .  W .  Van Atta and W. Y .  Chen 

Present measurements Uberoi (1963) - I 
15.7 7.7 15-7 15.7 

2.54 5.08 2.54 2.54 
0.477 0.953 0.635 0.635 

25,600 25,300 26,400 26,400 
48 48 48 72 

49.4 34.6 75 67 

A 

0.0161 0.0161 0.0214 0.0162 

1.24 x lo4 7.87 x lo2 1.95 x lo4 8.44 x 103 

TABLE 1 

~~ 

7 
15.7 
2.54 
0.635 

26,400 
110 

70 
0.0124 

3-42 x 103 
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FIGURE 5. Normalized one-dimensional spectra of total energy. 0, U = 15.7 m/s: 
0, U = 7.7 m/s. Uberoi: -, m/M = 48; ---, x /M = 72; - - -, x/M = 110. 
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smaller in the present experiment. This difference reflects the fact that Uberoi 
used a 1 in. mesh grid with 0.635 em diameter wooden dowels, whereas our 1 in. 
grid was constructed of 0.477 cm diameter polished aluminium rods. 

The three-dimensional energy spectrum was calculated using the isotropic 
relation 

where k = (k i  + k2, + ki)*. 
If we had measured only the spectrum of u or v, it would have been necessary to 
differentiate the measured spectrum twice in order to obtain E(k) .  This would 
produce unacceptably large uncertainties in E(k) .  We used Uberoi’s logarithmic 
differentiation method to determine E(k)  from E&J, since this procedure is 
much more accurate than direct differentiation. 
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FIGURE 6. Normalized three-dimensional energy spectra. 0, U = 15.7 m/s: 
0, U = 7.7 m/s. Uberoi: -, x /M = 48; ---, x /M = 72; - - -, x /M = 110. 

The computed E(k)  spectra and the dissipation spectra 2vk2E(k) normalized 
with the Kolmogoroff length scales and velocity scale are presented in figures 6 
and 7 and compared with the measurements of Uberoi. As expected, the energy 
spectra exhibit maxima at Ic - 1/M. The values of E at high wave-numbess are 
too small to present in figure 6. There is fair agreement with Uberoi’s E(k)  
spectrum for x / M  = 48, except for wave-numbers near k N 1/M. Agreement 
should not be expected in this (the energy-containing) range because of the 
difference in turbulence intensities in the two experiments and the fact that 
Kolmogoroff scaling is not expected to apply in this range. For U = 15-7m/s, 
the values of klk,  corresponding to the maximum values of the energy and 
dissipation spectra are in close agreement with those obtained by Uberoi for 
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x/M = 48. The present normalized dissipation spectra, which emphasize the 
higher wave-numbers, are in fairly good agreement with Uberoi’s dissipation 
spectrum for x/M = 48 over the entire wave-number range. 

W k K  
FIGURE 7. Normalized three-dimensional dissipation spectra. 0, U = 15.7 m/s; 
0, rJ = 7.7 m/s. Uberoi: -, x /M = 48; ---, x /M = 72; - - -, x/M = 110. 

The rate of change of the energy spectrum aE/at was determined from the 
decay of E,,(kl) using the relation 

The one-dimensional energy spectrum EJkJ was measured at seven locations 
in the range 38 < x / M  < 55. The derivative 

at  x/M = 48 

was then measured as a function of k. The data for aE,,/at = UE,,P are shown in 
figure 8. The slopes 

were also measured for x/M = 48, and aElat was computed from the relation 
aE/at = - Uy(k)P(k)  E,,(k). 

This is essentially the same procedure as followed by Uberoi, with the exception 
that Uberoi obtained a continuous measurement of Eii(kl) as a function of x 
for fixed values of k, from an analogue plot? of his wave analyzer output as the 
probe was slowly traversed in the stream direction. The present data for 
aE( k ,  t)/at, normalized with the Kolmogoroff velocity scale vK, are compared 

t M. S. Uberoi (private communication). 
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FIGURE 8. Rate of change of one-dimensional total energy spectrum. 
0, U = 15-7 m/s; 0, U = 7-7 m/s. 

with those of Uberoi in figure 9. The present normalized data and those of Uberoi 
for x /M = 48 are in fairly good agreement for large wave-numbers ( k / k ,  greater 
than about @2), as would be expected for the locally isotropic range of wave- 
numbers. For isotropic turbulence, the integrated energy transfer is zero and 

U j o a  y/lEiidk = 2v k2Edk.  so” (3) 

For the present data, the measured values of the right-hand side of (3) are about 
26 % smaller than the left-hand side. For z / M  = 48, Uberoi found a similar 
discrepancy of 13 %. In  both cases, the discrepancy is most certainly due to 
the inapplicability for low wave-numbers of the isotropic relations used to derive 

48 Fluid Mech. 38 
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E(k,  t )  and aE(k, t)/at from the one-dimensional spectra. In  spite of this difficulty, 
Uberoi then enforced the equality of (3) by multiplying the measured p by 
a constant factor (0.87 for z / M  = 48), and then calculated T(k, t )  from the 
relation 

T ( k , t )  = ~ aE(k' t ,  + 2vk2E(k7 t ) .  

.We shall demonstrate below that this arbitrary procedure, which heavily 
weights contributions from non-isotropic low wave-numbers, can lead to mis- 
leading results in the over-all energy balance for higher wave-numbers in the 
locally isotropic range. 

at 
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FIGURE 9. Rate of change of three-dimensional energy spectrum. 0, U = 15.7 m/s; 
0, FJ = 7.7 m/s. Uberoi: -, x / M  = 48; ---, x/M = 7 2 ; - - - ,  E ~ M  = 110. 

5. Energy transfer spectra 
The three-dimensional energy transfer spectrum T(k,  t)  was computed from 

the measured triple correlation functions. Following Batchelor's (1953) notation 
wherever possible, we define the two-point third-order velocity correlation tensor 
Xaj(?) and its corresponding spectral tensor Filj( k) by the relations 

Taking f in the x-direction (direction of U ) ,  we have for the sum of the three 
correlations ,S'lll(rl), XZl2(r1) and 8313(rl) 
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Defining a function L(k) such that 

-iL(k,)/k, = /:ooJm --m rt1tm dk2dk3, ( 5 )  

and taking the one-dimensional Fourier transform of (4)) we find that 

L(kl) plays the role of a measurable one-dimensional energy transfer function 
from which T(k, t )  may be derived. From Batchelor (1953) we have, for isotropic 
turbulence, 

Substituting for I'tli(&) in (5) we have 

Transforming to polar co-ordinates g = (ki + k:)b and 8, and integrating over 8, 
we obtain 

since k2 = cz+k2,. Differentiating with respect to k,, we find 

Using this relation, we can calculate T(k,  t )  from the measurable one-dimensional 
transfer spectrum L(k) with only a single differentiation. It is possible to derive 
similar relations for T(k, t )  depending on one-dimensional spectra which are the 
one-dimensional Fourier transforms of only a single triple correlation, but such 
expressions for T (  k ,  t )  invariably involve second derivatives of the transforms, 
and hence would lead to unacceptable uncertainties when applied to experi- 
mental data. The situation is somewhat analogous to that encountered when 
determining E(k,  t )  from one-dimensional energy spectra. Integral relations for 
T in terms of correlation functions are also available, but our experience has been 
that the particular combinations of trigonometric and algebraic functions en- 
countered in these expressions preclude sufficiently accurate numerical integra- 
tion, especially for large values of k. We therefore have been led t o  work with 
the combination Sili(rl), hoping that such a procedure may also help to minimize 
the effects of anistropy at  the smaller wave-numbers. 

To ensure that L(E) is a real function requires that Slll(rl), h'212(rl) and h'313(r1) 
be odd functions of rl .  As shown in some of our previously reported measurements 
(Van Atta & Chen 1969)) we find that these correlations, measured at a single 
point, are in fact nearly odd functions of the time delay r ,  and, assuming that 
rl = Ur, nearly odd functions of rl .  In  order to apply (6) in the present study, we 
have replaced each approximately antisymmetrical measured Xiij(rl) by an 

48-2 
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exactly antisymmetrical function formed from one-half of the difference of the 
measured correlations for positive and negative r,. That is, we replaced 

fllll(?l) by flZdr1) = 3[fl,,,(r,) - fllll( - ?,)I 
and f l Z l Z ( ~ 1 )  by fl;lz(rl) = HflZlZ(~1) - fl,,z( - r1)l. 

Noting that (u2(t) u(t - 7)) = (u(t) u2(t +r)) ,  fl&,(r,) is identical with the com- 
posite triple correlation measured by Frenkiel & Klebanoff (1967a, b )  and by 
Van Atta & Chen (1968). Although these two investigations produced strikingly 
different individual triple correlations, the composite triple correlations are in 
good agreement. As reported previously (Van Atta & Chen 1969), the present 
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FIGURE 10. Normalized triple correlations. U = 15.7 m/s: 0, S:ll; 

measured individual triple correlations for the longitudinal component (f7111(~l)) 
are in good agreement with our previous measurements made with a single 
hot wire. The triple correlations S&,(r,) and flglz(rl), normalized with (u3) and 
(uvz) respectively, are shown in figure 10 for values of Ur/M up to 3-0. For larger 
values of U r / M ,  the correlations decay smoothly to zero. The discrete series of 
data points specifying each LJ&(Y,) = 8&,(r1) + 2fl&z(rl) as a function of r was 
fast-Fourier-transformed to obtain L( k,) using (6). The functions obtained are 
shown in figure 11. We note that the scales in figure 11 for the high- and low-speed 
data differ by a factor of 10, reflecting the fact that a considerably larger amount 
of energy must be spectrally transferred in the higher-speed flow, for which the 
absolute turbulence intensity is larger and the dissipation higher. The three- 
dimensional energy transfer spectra T(lc), derived from the data of figure 11 
using (7), have roughly the same relative amplitudes and shapes as the one- 
dimensional L(k,) spectra. The cross-over point from negative to positive net 
energy transfer occurs at wave-numbers of k = 8.5cm-l and k = 4-3cm-l for 
the high- and low-speed data, respectively, corresponding to length scales of 
about 0.05M. The negative maxima for low wave-numbers occurs at 
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k: = 1.31 ern-1 and k = 0.66 cm-1 for the high- and low-speed data, respectively, 
corresponding to  a length scale of 0-3M.  The measured energy transfer spectra 
T(k) ,  normalized with the Kolmogoroff velocity wK = ( v E ) ~ ,  are plotted versus 
normalized wave-number in figure 12. The two normalized spectra collapse 
fairly well into a single curve, especially a t  the higher wave-numbers. For 
k/kK < 0.2, the net energy transfer at  any given wave-number k is negative, 

--- 
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FIGURE 1 1. One-dimensional energy transfer functions. -, 
U = 15.7 m/s, ( ~ m / s ) ~  x lo2; - - -, U = 7.7 m/s, ( C ~ / S ) ~  x lo1. 

FIGORE 12. Measured three-dimensional energy transfer spectra. 
0, U = 15.7 m/s; 0, U = 7.7 m/s. 
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and for k /kK > 0-2 the net transfer is positive. A broad maximum in the energy 
transferred to high wave:numbers occurs in the neighbourhood of klk, = 0.35. 
The location of the negative maximum in the energy transferred from low wave- 
numbers which occurs a t  about klk,  = 0.03 is certainly of less significance, 
since the turbulence is not locally isotropic for such low wave-numbers, and 
use of the isotropic formulas used to derive T ( k )  may produce misleading results. 
Comparing figures 7 and 12,  we note that the maximum in the dissipation 
spectrum occurs almost precisely a t  the wave-number for which the net energy 
transfer is zero. 

I 

FIGURE 13. Comparison of directly measured transfer spectrum with isotropic dynamicai 
equation and with results of Uberoi. -, directly measured; - - -, computed from measured 
(aE/at) +2vkaE; Uberoi: - - -, x / M  = 48; - - - -, z /M = 72; - - - - -, x / M  = 110. 

I n  figure 13 the extent of the validity of the isotropic relation of (1)  for grid- 
generated turbulence is determined by comparing the directly measured energy 
transfer spectra with the measured values of {@Elat) + 2vkZE}/v>, the sum being 
obtained from the data of figures 7 and 9. The directly measured T(k)  is in good 
agreement with the measured {(aE/at) + 2vk2E} for nearly the entire wave-number 
range in which the turbulence was previously found to be locally isotropic. 
The extent of agreement of the spectral energy balance with (1) is a higher-order 
criterion for local isotropy, as ( 1 )  contains third-order moments as compared with 
only the second-order moments (Ell and E,,) usually considered. However, 
because of the experimental uncertainties involved in obtaining the three- 
dimensional quantities in ( l ) ,  the most we can conclude in the present case is 
that the extent of local isotropy is about the same as previously determined 
from E,, and El, alone. 

Also shown in figure 13 are Uberoi’s data for the sum ((aE/at)+2vk2E)/v$ 
calculated using his measured (non-adjusted, see Q 4) values for /3. All the nor- 
malized spectra, including those for Uberoi’s three stations, are in good agree- 
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ment for klk, 2 0.3 and we conclude that the data represent the universal 
energy transfer spectrum in this range of wave-numbers. Noting that the turbu- 
lence is locally isotropic for klk, 2 0.24, we further tentatively conclude that 
our directly measured transfer spectrum in the range klk, > 0.2 is a close 
approximation to the complete dissipative-range universal transfer spectrum 
that would be obtained for very large values of RA. A definitive experimental 
check of this conclusion would require that RA be large enough to produce an 
inertial subrange, in which T(k, t )  is zero, separating the energy-containing and 
dissipative ranges. If Uberoi’s adjusted values for p are used, the agreement 
with our data is somewhat poorer and his data for the three values of x / M  do 
not collapse as closely into a single curve. We conclude that Uberoi’s enforce- 

ment of the equality of (3), and thereby the requirement that T ( k , t ) d k  

be equal to zero, is inappropriate for grid turbulence, as the undue emphasis 
accorded by this procedure to the non-isotropic low wave-number range degrades 
the degree of similarity produced by Kolmogoroff scaling at  larger wave-numbers 
where the turbulence is locally isotropic. 

som 

6. Comparison with direct-interaction calculations 
The direct-interaction equations for the decay of isotropic turbulence have 

been integrated numerically by Kraichnan (1964),  with initial spectra of several 
shapes and initial values of Rk < 40. Kraichnan compared his results with 
measurements of one-dimensional longitudinal dissipation spectra in grid turbu- 
lence by Stewart & Townsend (1951). Considering his rather arbitrary choices 
of initial spectra, he found satisfactory quantitative agreement with experiment. 
Comparable agreement was found for the present normalized one-dimensional 
spectra, which define a curve lying within the scatter of the Stewart & Townsend 
data. We can, however, extend our comparison to the three-dimensional spectra 
and energy transfer spectra computed by Kraichnan. To facilitate comparison 
we adopt Kraichnan’s asymptotic scaling wave-number k, and velocity vd, 
which are related to the Kolmogoroff similarity variables by 

We shall compare our data with Kraichnan’s runs number 4 and 10, for which 
he presented results for T ( k ,  t ) .  Kraichnan indicated that the longest computa- 
tion times used in his calculations probably corresponded to the initial period 
of decay in grid turbulence. We find indeed that the measurements and calcula- 
tions are in closer agreement as the total elapsed computation time increases, 
and so we present comparisons only for the longest times used in the calculations. 
A difficulty in comparing Kraichnan’s results with experiment is, as he noted, 
the dependence of the results on the essentially arbitrary choice of initial spec- 
trum. Compared with the present measured three-dimensional energy spectra, 
Kraichnan’s initial spectra have maxima at substantially higher wave-numbers, 
and the over-all shapes of the spectra are quite different. This is reflected in the 
comparison of the measured and computed dissipation spectra for the largest 
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computation times, shown in figure 14. The measured spectra are generally 
smaller, and exhibit a maximum at a lower wave-number. The same differences 
are evident in comparisons of one-dimensional spectra. The comparison of the 

FIGURE 14. Comparison of measured dissipation spectrum with results of numerical 
calculations of Kraichnan. 0, U = 15.7 m/s; 0, U = 7.7 m/s. Kraichnan: - , run 4; 
- _ _ -  , run 10. 
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FIGURE 15. Comparison of measured energy transfer spectrum with numerical calculations 
of Kraichnan. -, present measurements, z /M = 48, R ,  N 40. - - -, Kraichnan run 4, 
t = 1*51L(O)/u(O), R ,  = 17-4; ----, Kraichnan run 10, t = 1*62L(O)/u(O), R, = 17.7. 
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computed and measured energy transfer spectra in figure 15, however, shows 
encouraging agreement. For run 4, the measurements and calculations are in 
good agreement for klk, 0-5, and all the spectra have the same general shape 
throughout the high wave-number range. Furthermore, the calculated points of 
maximum dissipation and zero net energy transfer occur at nearly the same 
normalized wave-number, as was also found experimentally. The fact that this 
value of klk, is shifted to higher wave-numbers in the calculations may be a conse- 
quence of the choice of initial spectra whose maxima were also shifted toward 
higher wave-number. The present comparison suggests that the use of more 
carefully tailored, experimentally realizable, initial spectra in future calculations 
is certainly desirable and may provide further useful comparisons. 

7. Comparison with hypotheses 
Various investigators have proposed hypotheses relating T (  k) with E (k). 

None of the hypotheses to date has a demonstrably sound physical basis. Most 
of the hypotheses have received considerable critical discussion and physical 
interpretation in the literature (e.g. see the discussion and bibliography of Pao 
1965). Although they invariably lead to energy spectra containing an inertial 
subrange, most of the proposed transfer spectra themselves apply only to higher 
wave-numbers, as they do not behave correctly in the inertial sub-range. To be 
physically correct in the inertial subrange, a hypothesis for T ( E )  should produce 
T(k)  = 0 over the entire inertial subrange, where E(k)  N k-8. When one substi- 
tutes only E(k)  = ak-5 in the various expressions for T ( E ) ,  the result, T = 0, 
is obtained in every case, but when one includes the complete spectrum (in- 
cluding either the high wave-number or low wave-number region, or both) those 
hypotheses involving integrals of functions of E produce T = 0 at most at  a 
single value of k, and not over the entire inertial subrange. The physically un- 
realistic influence of large wave-numbers on the dynamics of the inertial subrange 
is a particularly degrading feature of the latter group, which includes the hypo- 
theses of Obukhov (1941), Heisenberg (1948) and the modified versions of the 
hypotheses of Obukhov and Kovasznay discussed by Hinze (1959). The hypo- 
thesis of Pao (1965) and the unmodified hypothesis of Kovasznay (1943), which 
are differential forms that express T(k)  in terms of spectrally local values of E(k)  
anddEldk, are the only candidates that reduce to T = 0 over the inertial subrange. 

We compare the measured T(k)  with the transfer spectra calculated from the 
measured E(k)  using the various hypotheses. The hypotheses of Heisenberg, 
Kovasznay and Obukhov are of the form T = 2Kf(E), where K is an undeter- 
mined constant. Figure 16 shows the comparison with Heisenberg’s hypothesis 
and the modified Kovasznay and Obukhov hypotheses. For the latter two cases, 
no values for K can be found that will produce a good fit to the data, but Heisen- 
berg’s expression fits the data for large wave-numbers fairly well, using K = 0.25. 
Uberoi found similar agreement with Heisenberg’s hypothesis, with K = 0-2. 
There is, of course, no point in fitting the low wave-number region of the data. 
As shown in figure 17, Kovasznay’s original hypothesis cannot be scaled to fit 
the data, but the expression given by Pao fits the high wave-number data fairly 
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well. Pao’s expression contains no unknown constants, other than the Kolmo- 
goroff constant a. However, his expression fits the T(k)  data best if we choose 
a = 3.5, roughly twice as large as the average of the measured values of a quoted 
by Pao. Realizing the futility of attempting to draw meaningful physical 

- 10.0 L 
FIQURE 16. Comparison of measured transfer spectra with T ( k )  computed from measured 
E(  k) using Heisenberg’s hypothesis and modified hypotheses of Kovasznay and Obukhov. 
-, Directly measured; - - - -, Heisenberg; X = 0.25; - - - -, modified Kovasznay; 

, modified Obukhov. 

- 10.0 L 
FIGURE 17. Comparison of measured transfer spectra with T ( k )  computed from measured 
E(k)  using hypotheses of Kovasznay and Pao. -, measured; - - -, Kovasznay; - - -  -, 
Pao, a = 3.5. 



Measuremen ts  of spectral  energy transfer in grid turbu lence 763 

conclusions from the various hypotheses, one hopes that more direct calcula- 
tions (such as those of Kraichnan), involving no arbitrary constants, will soon 
become available. 

8. Conclusions 
The energy transfer spectrum in locally isotropic turbulence can be accurately 

determined from measurements of a particular combination of third-order corre- 
lation functions. For large enough wave-numbers the spectral transfer of turbu- 
lent energy in grid turbulence is adequately described (within experimental 
uncertainty) by the spectral energy balance equation for isotropic turbulence. 
The isotropic relation is accurate over roughly the same wave-number range 
found to be locally isotropic by considering energy spectra alone. For large wave- 
numbers the present measured transfer spectra may closely approximate the 
universal similarity range energy transfer spectrum. 

The present experimental results are generally consistent with those obtained 
by Uberoi. However, certain operations on the data employed by Uberoi for 
purposes of interpretation have been found to be unnecessary or unwarranted 
when the complete energy balance is measured. 

The degree of quantitative agreement of the measured energy transfer spectra 
with the results of Kraichnan’s calculations for decaying isotropic turbulence 
encourages further calculations of this type, using initial spectra of the form 
observed in the laboratory. 
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